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ABSTRACT: The existence of positive solutions is considered for a fractional g-difference equation with p-
Laplacian operator in this article. By employing the Avery-Henderson fixed point theorem, a new result is obtained

for the boundary value problems.
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l. INTRODUCTION
Fractional calculus is the extension of integer order calculus to arbitrary order calculus. With the development of
fractional calculus, fractional differential equations have wide applications in the modeling of different physical
and natural science fields, such as fluid mechanics, chemistry, control system, heat conduction, etc. There are
many papers concerning fractional differential equations with the p-Laplacian operator [1-5] and fractional
differential equations with integral boundary conditions [6-10].

In [11], Yang studied the following fractional g-difference boundary value problem with p-Laplacian operator
“D’ (¢, (*DX()) = f (t,u(t),0<t <L 2<a <3,
x(0) = x(1) =0, Dy x(1) = °Dyx(0) =0,

where 1<, 3 <2. The existence results for the above boundary value problem were obtained by using the
upper and lower solutions method associates with the Schauder fixed point theorem.
In [12], Yuan and Yang considered a class of four-point boundary value problems of fractional g-difference

equations with p-Laplacian operator

Df(¢P(Dgx(t))) = f(t,u(t)),0<t<1l2<a<3,
x(0) =0, x(1) = ax&, Dy x(0) =0, Dy x(1) =bD; x(17),

Where Dqﬂ ,Dyis the fractional g-derivative of the Riemann-Liouville type with 1<, #<2. By applying the
upper and lower solutions method associated with the Schauder fixed point theorem, the existence results of at
least one positive solution for the above fractional g-difference boundary value problem with p-Laplacian operator
are established. Motivated by the aforementioned work, this work discusses the existence of positive solutions for

this fractional g-difference equation:
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D/ [4, (‘D u()]+ f (t,u(t)) =0,t € (0,1),
#,(°D;-u(0)) =[¢, ("D; .u(0)] = ¢, ("D . u() =0,
D .u(0)=D, ,.u(®) =0,

(1.1)

au(0) +bD,  u(0) = j:g(t)u(t)dqt,

where 2<a<3,2<f<3, and S5<a+f<6. ¢p(u)=|u|p72u, p>1. °D; is the Caputo fractional g-

derivative, D:y is the Riemann-Liouville fractional g-derivative.

We will always suppose the following conditions are satisfied:

(H) 9:[0,0>[0,40) with g(©) e L[0,1], [ g()dyt>0, and [ tg(t)dyt >0
(H,) a,be(0,+x), a> j:g(t)dqt and b>a:

(Hj3) f(t,u):[0,1]x (0, +00) — (0,+00) is continuous.

II. BACKGROUND AND DEFINITIONS
To show the main result of this work, we give in the following some basic definitions and theorems, which can be
found in [13,14].

Definition 2.1 [13] Let ¢ >Qand f be a function defined on [0,1]. The fractional q-integral of Riemann-
Liouville type is (Isv0+ )0 1 (1)

(a-1)
(1, OO = [ q?) (Ods a0t

Lemma 2.2 [13] Let a > 0, then the following equality holds:
a] -1 k

1#,°D”  f(t)=f(t
o Poo FO=T1O- 2T (k+D) 1) D,

0.

Lemma 2.3 [14]Ler o >0, If D:o+u eC[0,1], then

qO+Do’yf('[)— f(t)—i—zl:kt(a g
where n=[0{]+1

w(0)=0,
Theorem 2.4 (Avery-Henderson fixed point theorem [15]) Let (E, ||||) be a Banach space, andP c E be a

cone. Let W and @ be increasing non-negative, continuous functionals on P, and @ be a non-negative

continuous functionals on P with such that, for some Ty >0and M >0, p(u) < w(u) <y (u),

olume 2| 1ssue WWW.1jrtem.com
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and ”U” <Mo(u), forall ue p(p,r,), where p(@,1,)={uecP:p)<r}. Suppose that there exist
positive numbers 1, <, <V, such that

o(u) <lou) for 0<1<1, and UedP(a,r,).

If T:p(@,1,) = P is a completely continuous operator satisfying:

(C) o(Tu) >r, forall uedP(a,r,);

(C,) @(Tu) <r, forall uedP(m,r,);

(C,) P(w,1r) #@,and w(Tu)>r1, forall uedP(y,r),

then T has atleast two fixed points U, and U, suchthat ¥, <y (U,) with @(U,)<T¥, and T, <w(U,)

with @(U,) <T;.

III. PRELIMINARY LEMMAS

Lemma 3.1 The boundary value problem (1.1) is equivalent to the following equation:

1t a-
U(t):do+d1t+mjo(t_qs)( l)V(S)qu, G.1)

where

y= [Jo0], t-a9)“Pv(s)d,sdt
[a- [, 9()d I, (@)

b—[tg(t)d . :
N [1 [ ta®d.t] g9 veas (3.2)
[a-— jog(t)dqt]rq(a-l) 0

d, = —————[11-09)“?v(s)d,s
T, (a1 ™ (3.3)
v©) =4, ([ H.00 1 (wu(e)d,e) s
Hs7) = {(s(l—r»(ﬁ”—(s—r)(“, 0<r<s<i

B (s, O<s<r<l. (3.5)

-2
$,(S) is the inverse function of ,(s), a.e., $,(s) = |$|q S b g

Proof From D(fy [¢p(CD:o+u(t))] + f(t,u(t)) =0, we get
_r
(8

4,("Df u() =— jo‘ (t—an)” D f (r,u(e))d T +ct’ +ctP 2 e t?

olume 2| 1ssue WWW.1jrtem.com
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In view of ¢, (°D7,u(0)) =[¢, (°D“+u(0))]'=0, we get C, =C, =0,

¢p(c D’ ())_—mf( —qr)? P f (r,u(2))d r+ct

Conditions ¢, (° D”‘0+ u(@)) =0 imply that

=— )PV f(r rdr
¢ F(ﬂ)j( —a0)" £ (7,u(7))

By use of (3.6) and (3.7), we get
1

$,(°DZ u() = jo H (t,q7) f (z,u(2))d,z.
In view of (3.8), we obtain

D, u) = ¢ ( [(Ho) (T,u(r))dqr).
Let

1

VO =4 [;HE.00) F(mu()dye )

by use of (3.9), we get

u(t) = M )j (t—0s)“Pv(s)d,s +d, +d,t +d,t%

Conditions D2 +u(O) =0 imply that d, =0, ie,

u(t) _m j (t—as)“Pv(s)d,s+d, +dt,

then we have

u'(t):r

Conditions D 0+u(1) =0 imply that
a,

) Pv(s)d,s.

1

From au(0)+bD_ .u(0) = j:g(t)u(t)dqt, we get

1
do = g(t)| (t—as)“Pv(s)d,sd,t
[a- [ 9(O)d I, (@ )I I

. [b—.[tg(t)d t]
[a— j g(t)d M, (@ —1)

j (1-0s)““ Pv(s)d,s.

Therefore, we can obtain

_ 1 (a-1)
u(t) =d, +dt +m jo (t—gs)“Pv(s)d,s

i.e.,

(3.6)

3.7)

(3.8)

(3.9)
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1
= g(t)| (t—as)“Pv(s)d,sd,t
[a- [} 9()d AT, (o )J J

b— d
N [ jtg(t) Al fl 09 Pu(s)d, o
[a— jg(t)d tJr, (@ -1)

1)I (1—gs)“?v(s)d ST @ )I (t—gs)“Pv(s)d,s.

The proof is complete.

Lemma 3.2 ([16]) The function H(S,7) defined by (3.5) is continuous on [0,1]x[0,1] and satisfy

"t (1-s)r(l—7)P P <H(s.0)< r(l—7)¥ ™Y for

I (8) r,(8-1)

Let E be the real Banach space C[0,1] with the maximum norm, define the operator T:E —E by

s,7 €[0,1].

_ 1 o (a-1)
Tu(t) =d, +d,t+ r—a)Jo (t—gs)“Pv(s)d,s

1
= t—0s)“Vv(s)d,sd,t
. [[a®[ t-as)“Mv(s)d,s

[b— j tg(t)d,t]
[a— jg(t)d tir, (-1

J' 1-0s)“ v(s)d,s

- ( j (1-gs)“?v(s)d, S+—— I (t—0s)“v(s)d,s.

Lemma 3.3 For ueC[0,1] with u(t)>0, (Tu)(t) is non-increasing and non-negative
Proof Since

Tu(t)=d, +dt+

B AROLR

so we get

"y I (' qey@d
(Tu) (t)—d1+r(a_1) jo(t 4s)““2v(s)d,s

1 ! a-2 1 t a2
oD fo(l—qs)( ’v(s)dqs+rq(a_1) Io(t—qs)( v(s)d,s

So (Tu)(t) is non-increasing, then we have {TE(!T]TU (t) =Tu(1). We have

TU) =0, +d, + — ta) [l a-09“v(s)ds
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1
[a- [ g()d 1T (@)
[b— j:tg(t)dqt]
[a—I:g(t)dqt]Fq (a-1)

j; g(®)[ (t-a8)“Pv(s)d,sd ¢

+

j: (1-gs)“2v(s)d,s

1 ! (a-2)
_Fq(a—l) jo (1-0s)“?v(s)d s+
1

= 1
[a—[ g()d tIT, (@)

B[4 -la- [ o)d,
[a— jolg(t)olqt]rq (a-1)

1 0 gey@d
F @ jo(l gs)“?v(s)d,s

o[ (t-a9)“?v(s)dsd,t

j: (1-0s)“?v(s)d,s

1 ¢ (a-1)
+m.|.0 (1—q3) V(S)qu
>0.

The proof is complete.

IV. MAIN RESULTS

Theorem 4.1 Suppose that there exist numbers 0 < L <Y, <1, such that fsatisfies the following conditions:

(Hl) f(t,U)>|V|3, for t€[0,1],
uelr,-2];
(H,) f(t,u)<M,,for te[0,1], uelo,r,];

(H;) f(t,u)>M,, for te[0,1], uel0,r],

L) (ij“’ Mzzl"q(,b’—l)[r_zJpl’ WL (EJH,
aB,(2, )\ L aB,(2, )\ L, qB,(2,8)\ L

b-a 1

where

Na- jol g(t)d tIr, (@) " Iy (a+1)

j:(s”‘l(l—s))qfldqs,

ey N b- [ tg(t)d,t
2 [a—jolg(t)dqt]rq (@+1) [a- j:g(t)dqt]rq @)
b- _[:tg(t)dqt
[a- [La®d I, (@)

Then the problem (1.1) has at least two positive solutions U, and U, suchthat I, < l//(Ul) with a)(ul) <,

J':(s'”’l(l—s))qfldqs.
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and T, <w(U,) with @(U,)<Tr,.
Proof Define the cone P c E by
= i >
P {u|u € E,trerggir}u(t) >k |u.t e[O,l]},

where

- [to®d -2 [[o®dy]
b- [ tg(t)d,t

, O0<k<1.

Forany Ue€ P, inview of Lemma 3.3, we get

mmnmm [Tu@|=d, +d, + ()ja 4s)“ P v(s)d,s
1
[a- [ a®d,ar, (@)™

X m—j@mdq
[ajgmdmim 1)

[Ja®] t-as)“Pv(s)d,sd,t

J' (1-0s)“?v(s)d,s

J'O (1-0s)“v(s)d,s + .[ @-0s)“Pv(s)d,s

r (a—l)
1

m [Ja®dtr, (@)™
[b- [tad,1-la-[ g®d ]
b—LgGNJFJa—D

1

>k jgmja 4s)““ P v(s)d,sd,t
[a- [, 9O, (a)

. m—j@mdq
[ajgmdmfm 1)

=kTu(0) = k|[Tu].

F()
[La® t-as)“ v(s)d,sd,t

j (1-0s)“?v(s)d,s

I (@-as)“?v(s)d,s

Therefore, T:P — P. In view of the Arzela-Ascoli theorem, we have T:P — P is completely continuous.

We define the functions on the cone P:
p(u) = min |U(t)| =u(d), o(u) = m%|u(t)| =u(0),

ww)g?yum—wm
Obviously, we have  @(0) =0, p(u) < w(u) <y (u).

— . . 1
Forany ue p(p,r,), we get trl?(!rlllu(t) > k||ul|, thatis, @(u)> K |ultherefore we obtain |u] < o).
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Forany Ue€dP(m,r,), weget o(lu)=Ilou) for 0<I<1.
In the following, we prove that the conditions of Theorem 2.1 hold.

r
Firstly, let U € OP(a,1;), thatis, Ue [fgrit]e [0,1]. By meansof (H,), we have

v(©) =4, ([ H .00 (7.u( ),
18" (1-s)qrd—a0)" |
>¢ { I rq(ﬂ) QTJ

(Ms"ia-s)gB,2.8))
I, (8)
where B, (2, 8) = J-:r(l—QT)(ﬂ’l)dqr. So we get

o(Tu) = m|n|Tu(t)| Tu(®) =dy + +—— ( S j (1-0s)“v(s)d,s
1
fa- [ ad,ar, (@)
. [b- jtg(t)d t]
[a— j 9(t)d 10, (@ —1)

j 1—-gs)“?v(s)d,s+

[La®] t-as)“Mv(s)d,sd ¢

j (1—gs)“?v(s)d,s

L ' qey@D
F( Y (a)jo(l gs)“v(s)d,s

- [t t1-[a- [ odt]

j:(l—qs)“”’z)v(s)dqs
[a j g(t)d tIr, (@ —1)

@Dy(s)d,s
r( )%
b-a J‘ 1 gs )(a 2)(M35ﬁ_l(1_5)q5q(21,8)J ds
[a j g(t)d,tIr, (a-1) (3 !

+ —qs) ™ [ M.s”*(1—-5)aB, (2, ) Jq_ld S
I, (a) 0 I, (B) !

- b-a [quBq(Zaﬂ)Jq1jl(sﬁ—1(l_s))q—1d S
[a— j:g(t)dqt]rq @)\ T8 0 ‘

1 (MB,RAY ) pan e
+Fq(a+1)( ) ] (s a-9) ds

_(MaB,2A)Y)"
( ks ] L=
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Secondly, let U € OP(w,r,), thatis, U€[0,r,] for t€[0,1]. Bymeansof (H,), we get

v(s)= 4, ( [[HEam G u(r))dqz')
y (M pard-a)’? T]{quBq (Z,ﬂ)]ql
e T (8- r.(8-)

o(Tu) = max [Tu(t)| =Tu(0) =d,

[Ja®] t-as)“Mv(s)d,sd,t

So, we have

fa- [ ad,ar,(«)
[o— j tg(t)d,t]

" J'(l gs)“ ?v(s)d,s
[a- [ 9O, (@ -1) y
1 -1 quq(Z.ﬂ)J i st
[ [ 900 @ )I e { gy )

b d ) W
N [l [REIOLRY Io(l‘qs)(az{quBq(z’lﬂ)J 0s
[a— [, g®d tIr, (@—1) Ty (8-1)

3 I: g(t)d,t (qusq @, /3)}‘”
[a—jlg(t)d I, (@+) | To(B-D)

[b- [ ta(®d,t] [ quq(Z,/?)]ql
[a j g(t)d, t]r (@) T (B-1

(MaB@A)"
= —— "~ , =L,
r,(8-1)

Finally, let U€OP(y, 1)), thatis, U€[0,r] for t€[0,1]. By meansof (H,), we get

v(s)= 4, ( [[HE@ G, u(r))dqr)

g A ) [T 508, (2. "
I (8) I, (8)

So we get

w(Tu) = tm[% |Tu(t)| =Tu(0) =d,

- j g()j (t-gs)“ v(s)d,sd,t
[a— jg(t)d tIr, («)

|Volume 2| Issue 7 | WWW.ijrtem.com

| 13 |



Existence of positive solutions for fractional g-difference...

[b— joltg (t)d,t]
[a- I:g(t)dqt]rq (@-1)

[ a-as)“?v(s)d,s

0

b—('tg(t)d X e Wt
§ [1 [ ta)d, 1l I(l_qs)(a_z)(Mls @ s)qu(Z,ﬁ)} is
[a— [ g®)d tIr (@=1) " Ty (B)

- [b—j:tg(t)dqt] [Mquq(z’ﬂ)Jq1J'l(sﬂ‘1(1—8))q_ld S
- [o®dr,@l LB ) * ‘”

_(mMaB,@AY)
( L) ] T

Therefore, in view of Theorem 2.1, we see that the problem (1.1) has at least two positive solutions U, and U,

suchthat I, <y (u,) with @(u,)<r, and I, <w(u,) with ¢(u,)<r,. o

VI. EXAMPLE
In this section, we give a simple example to explain the main result.
Example 5.1 For the problem (1.1), let «=2.8, f=2.3,a=4,b=10, p=2, g(t)=t, then we get =2,

1 1 1 1
[adt= > Jied;t- S

1 1
b— | tg(t)d t]-[a— [ g(t)d t
- Jts® ql] [a-],90) M_37 0637031
h— jo tg(t)d,t 8

Let
23, t[0,1],u [0,9],
f(t,u) =423+600(u—9), te[0,1],u €[9,10],
623, t €[0,1],u [10, +o0).

From a direct calculation, we get 580
f(t,u) > M, =583.266938 for te[0,1]ue [10,3—7].
f(t,u)<M, ~36.538326 for t€[0,1],u €[0,9],
f(t,u)>M, =21.322041 for t [0,1],u €[0,0.5].

In view of Theorem 4.1, we see that the aforementioned problem has at least two positive solutions U; and U,

suchthat 0.5<wy(u;) with @(u)<9 and 9<w(u,) with ¢(u,)<10.
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